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The problem of the stressed state of a prismatic anisotropic rod containing screw dislocations, the axes of which are parallel to 

the rod axis, is considered. Such defects may arise during the growth of filamentary crystals (metal “whiskers”), and may also 

exist in multiply connected cylindrical structures. The torsion of an anisotropic elastic bar with a multiply connected cross-section 

is investigated initially, assuming that the stresses and strains are single-valued but dispensing with the requirement that the warping 

function should be single-valued. The boundary-value problem is formulated in terms of the Prandtl stress function, which, unlike 

the warping function, is single-valued in a multiply connected region. A variational formulation of the boundary-value problem 

for the stress function is given. From the variational principle obtained a torsion boundary-value problem is formulated when 

there are lumped or continuously distributed dislocations. A modification of the membrane analogy for the torsion problem is 

proposed which takes into account the presence of dislocations. General theorems of the theory of the torsion of a rod containing 

dislocations are formulated. An effective formula is derived for the angle of torsion of a bar due to a specified dislocation 

distribution, Problems on dislocations in a thin-walled rod and a rectangular anisotropic bar are solved. 0 2002 Elsevier Science 

Ltd. All rights reserved. 

1. FUNDAMENTAL RELATIONS OF THE THEORY OF THE TORSION 

OF AN ANISOTROPIC BAR 

The system of equations describing the torsion of a prismatic body of anisotropic material, which 
possesses a plane of elastic symmetry, orthogonal to the bar axis, has the form [l] 

&I3 ; “23 -0 

ax, ax2 
(1.1) 

713 = krt3 + 1223* Y23 = IT13 + m223 (1.2) 

aw aw 
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Here x1 and x2 are Cartesian coordinates in the cross-section plane of the bar, r13 and ~23 are shear 
stresses, y13 and ~23 are the components of the shear deformation, o is the angle of torsion, w(xi, x2) 
is the warping function, k, 1 and m are the elastic compliances, Gi3 and G23 are the shear moduli, and 
u3i i2 and u23,3i are the Chentsov coefficients [l]. Introducing the coordinate unit vectors il, i2, i3 = 
il x’ i2, the vector of the shear stresses T = ri3il + z23i2, the shear deformation vector y = y& + y23i2 
and the compliance tensor A = kitii + Z(ili2 + i2il) + mizi2, Eqs (l.l)-(1.3) can be represented in the 
invariant form 

divl = 0 (14 

y=lL.7 (1.5) 

y=gradw-oeer (1.6) 
e=-i3 xE, r=xlil +x2i2 
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Here div and grad are the plane divergence and gradient operators, E is the unit tensor, e is the 
discriminant tensor and r is the radius vector of a point of the cross-section. 

The equilibrium equations (1.4) are satisfied identically after introducing the Prandtl stress 
function F 

T = e . gradF (1.7) 

while elimination of the warping function w from relation (1.6) leads to the deformation compatibility 
equation 

div(e . y) = 2w (1.8) 

From (1.5), (1.7) and (1.8) we obtain the following equation for the stress function 

div(L grad0 = -20 (1.9) 

L =-e . A. e = mi,i, - /(iliz + i2il) + ki2i2 

The boundary condition for the function F on the boundary of the region o, occupied by the cross- 
section of the rod, expresses the fact that there is no load on the side surface of the prismatic body and, 
by (1.7), has the form 

n.7=aFIas=0 

where n is the unit normal to ao and s is the length of the arc of the plane curve ao. 

(1.10) 

2. GENERALIZATION OF BREDT’S THEOREM 

Suppose the bar cross-section o is a multiply connected region, homomorphic to a circle with circular 
apertures. The external contour of the region cr will be denoted by Fa, while the contours of the apertures 
will be denoted by -F,(t = 1, 2, . . . , N). By virtue of condition (l.lO), the stress function F is single- 
valued in the region o and takes constant values Co and C, on each of the closed curves To and F, . Since 
the addition of an arbitrary constant to the function F has no effect on the stressed state of the bar, 
without loss of generality we can put Co = 0, which leads to the well-known boundary conditions [2] 
in the problem of the torsion of a multiply connected cylindrical body 

F1 r0 =o* qr, =C,, r=1,2 ,..., N (2.1) 

It does not follow from the single-valuedness of the stress field z and the strain field y in the multiply 
connected region that the field of the axial displacements w(r) will also be single-valued. As follows 
from equality (1.6), the warping is expressed by the formula 

w(r)= j dr.(y+6x5.r)+w(ro) 

r0 

(2.2) 

When the compatibility equation (1.8) is satisfied, the curvilinear integral in (2.2) will be independent 
of the integration path if the region o is simply connected. In the case of a multiply connected region, 
expression (2.2), generally speaking, gives a multivalued function. The non-uniqueness can be eliminated 
by converting the region o into a simply connected region by carrying out the necessary number of branch 
cuts. Then the values of the function wI on the opposite edges of each branch cut can differ by a constant 
quantity w+ - w_ = b,. By (2.2) the constants b, are independent of the choice of the system of branch 
cuts and can be expressed in terms of the strain field as follows: 

b, = f (y-cm-e).dr= f y.dr-h$ 

r, 5 

(2.3) 

where S, is the area of the tth aperture. 
The fact that the constants b, are non-zero indicates the existence of screw dislocations in the multiply 

connected cylinder, i.e. translational Volterra dislocations with Burger’s vectors parallel to the generatrix 
of the cylinder and having a length b,. From relations (1.5), (1.7) and (2.3) we obtain 
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f 
n.L.gradFds+b,+2til=0, t=1,2 ,..., N (2.4) 

t 

Here n is the outward normal to the region occupied by the aperture. Relations (2.4) serve to 
determine the unknown constants C, and are a generalization of Bredt’s theorem [2] on the circulation 
of shear stresses, taking into account screw dislocations and the anisotropy of the material. 

The torque, which must be applied to the ends of the multiply connected bar, in order to ensure a 
specified angle of torsion w, can be expressed by the formula [2] 

M=i,.JJ rxTdo=2JJ Fdo+2$ CJ, 
a 0 f=l 

(2.5) 

3. THE MEMBRANE ANALOGY WHEN THERE ARE DISLOCATIONS 

It is well known [2] that the Prandtl membrane analogy for the torsion problem can be modified by 
taking into account the presence of dislocations and the anisotropy of the material. We will consider 
an extremely thin elastic plate (a membrane), in which a uniform plane stressed state is produced, 
described by a stress tensor, which, apart from a constant factor, is identical with the compliance tensor 
L from Eq. (1.9). Since the specific strain energy of the elastic body l/2 T-Y is positive, the tensors h and 
L are positive definite, which implies the inequalities k > 0, m > 0 and km - l2 > 0. We obtain the 
spectral expansion of the tensor L 

L =Lld,d, + L2d2dZ (3.1) 

4.2 =- ;(k+m)+m 

d, =i,coscp+i,sincp, d, =-i,sincp+i2coscp 

1 21 
tgcp=-= 

k-b k-m-,/v 

Here Li and L2 are positive eigenvalues, while di and d2 are unit orthogonal eigenvectors of the tensor 
L. By expression (3.1), the stress state of the membrane, corresponding to the tensor L, can be produced 
by a tension L1 in the direction di and a tension L2 in the orthogonal direction d2. A membrane stretched 
in this way is clamped along the contour I0 and loaded by a transverse uniform pressurep, proportional 
to the angle of torsion o. The equation for the sag of the membrane u can be obtained from the equation 
of the sag of a prestressed plate [3], by allowing its cylindrical stiffness to approach zero. As a result, 
for the case of a simply connected region we obtain a boundary-value problem identical with the problem 
for the stress function F 

div(L.gradu)=-p, UlrO =o (3.2) 

To model a multiply connected cylindrical body without dislocations, rigid horizontal discs, for which 
only translational vertical displacements are permitted, are attached to the stretched membrane in the 
regions bounded by the contours I,. After this the whole system is loaded with a uniform pressure p. 
The conditions of equilibrium of all the forces applied to each disc correspond to Eqs (2.4) when 
b, = 0 in the membrane analogy [2]. 

If dislocations are present in a multiply connected cylinder, then, by (2.4) an additional point force, 
coinciding (apart from a certain dimensional factor) with the length of the Burgers vector 
corresponding to this dislocation, must be applied to each disc. Hence, the existence of screw dislocations 
in a multiply connected cylinder is modelled in the membrane analogy by point forces applied to rigid 
discs. 

The main value of the membrane analogy described is the fact that it can be used to represent clearly 
the solution of boundary-value problem (IS), (2.1), (2.4) for the stress function F. In this case there is 
no need in fact to carry out an experiment with a loaded membrane. A thought experiment is quite 
sufficient. 
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4. THE VARIATIONAL PRINCIPLE 

The specific additional work of an anisotropic body in the torsion problem can be expressed as follows 
based on relations (1.5) and (1.7) 

V=~y.l=17.A.~=~gradF.L.*adF 
2 (4.1) 

We will prove that boundary-value problem (1.9), (2.1), (2.4) is e q uivalent to the variational problem 
of the minimum of the functional 

n[F,C,,..., Cw] = jI (V - 2oF)do - $ (2e.~S, + bt )C, 
0 t=1 

The functional fI is defined in the set of twice differentiable stress functions satisfying boundary 
conditions (2.1). The constants C, (t = 1, . . . , N), on which the functional depends, is unknown in advance 
and must be varied. Using expression (4.1), we calculate the variation of functional (4.2) 

all= I] (grad F. L. grad 6F - 2w6F)do - 2 (2wS, + bt )SC, = (4.3) 
Is t=l 

= II [div(WL . grad F) - GFdiv(L . grad F) - 206FJdo - $ (2eSt + b, )SC, 
a t=I 

Using Green’s formula and taking conditions (2.1) into account, we obtain 

a-l = -Ij 
a 

[div(L . grad F) + 2coJ6Fdo - $ f n. L. grad F& + 2wS, + bt 
I 
SC, (4.4) 

As can be seen from expression (4.4), the necessary and sufficient conditions for the functional lT to 
be stationary consist of Eqs (1.9) and relations (2.4). The property that the functional should be a 
minimum at a stationary point follows from the fact that the tensor L is positive definite. The variational 
formulation of the torsion problem was presented previously in [2] for an isotropic material ignoring 
dislocations. 

We will use the variational principle to solve the problem of the torsion of a thin-walled tube containing 
a dislocation. The section of the rod in this case is a doubly connected region, where the contours To 
and r are close to one another. A screw dislocation in such a body can be produced by cutting the tube 
along the generatrix, a longitudinal shift of the edge of the cut by a distance bl and cementing them in 
the new position. The defect described can arise in the structure when it is being manufactured. We 
will assume that the curve rr is given by the equations x1 = x1(s) and x2 = x*(s), where s is the current 
length of the arc. A position of a point of the region cr will be specified by the coordinates s and <, 
where c is the distance measured along the normal to rr, where < = 0 on r, and 5 = h on To. We will 
assume the wall thickness h to be constant. Basing ourselves on the membrane analogy, we will 
approximate the stress function in the case of a thin wall by an expression which satisfies conditions 

(2-l) 

F=C,(l-Ljh) (4.5) 

Taking expression (4.5) into account we will write the functional of the additional work (4.2) in the 
form 

l-l =$C; -of.& -(2ti, + b,)C, 

(L, is the perimeter of the contour I-r). By expression (4.6) we find from the stationarity condition 
XI/X, = 0 
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QC, = (2S, + f&&r + b,h (4.7) 

The torque is found from formulae (2.5) and (4.5) 

M = (2S, + L&C, (4.8) 

From relations (4.7) and (4.8) we find the angle of torsion o which occurs when there is no torque, 
i.e. when M = 0 

In (4.9) S; is the area bounded by the middle line of the cross-section, i.e. by the contour passing through 
the middle of the contours I0 and Ii. By relations (4.5) and (4.8), we have F = 0 when M = 0. This 
means that when there are no external loads, a screw dislocation in a thin-walled rod of arbitrary closed 
profile produces a torsion of the rod, but produces no stresses in it. As follows from expression (4.9), 
the value of the torsion is independent of the physical properties of the material, and is defined purely 
by the geometrical characteristics of the cross-section. 

We will consider one more example of a pentaconnected thin-walled tube, the cross-section of which 
is a thin circular ring of radius r. with two orthogonal diametral partitions (Fig. 1). The thickness of 
the ring and the partitions is h. 

We will denote the value of the stress function in the fourth ring, adjoining the sth aperture, by 
FS(s = 1,2,3,4), and on the part of the partition separating the sth and tth apertures by F,,. Assuming 
that h G ro, we use the approximation of the stress function which satisfies boundary conditions (2.1) 

F, =C,h-‘(r-r,), r,-hs rs r. 

24, = C,&+ + Car;, 2FD = C& + C& 

2% = c& + C,&* 23, = c,<; + c,c; 
(;a = lf2x,,a /h 

(4.10) 

(r is the radial coordinate of an arbitrary point of the ring). Assuming the material of the tube to be 
isotropic with shear modulus G, using relations (4.2) and (4.10) we obtain the following expression for 
the functional of the additional work 

(4.11) 

Fig. 1 
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From the conditions for functional (4.11) to be stationary XI/X, = 0 when M = 0 we obtain 

o=_b~ +b,+&+b, 
2(6r,h + nd’> ’ 

c, = 
Gh(46, - i b, ) 

,=I 

2r0(4+x) ’ 
s = 1, 2, 3, 4 (4.12) 

5. LUMPED AND CONTINUOUSLY DISTRIBUTED DISLOCATIONS 

Using the variational principle, we will change from a multiple connected bar with isolated dislocations 
to the case of a simply connected cylinder with a discrete set of lamped dislocations. To do this we will 
reduce without limit the diameters of the apertures, contracting each contour r, (t = 1, . . . , N) to a 
certain point rl. The length of the Burgers vector b, remains unchanged on taking this limit. Since the 
values of the stress function F are the same at all points of the contour r,, in the limit the constants C, 
(t = 1, . ..) N) are identical with the values of the stress function at the points rI, the areas S, vanish, 
and functional (4.2) will have the following expression 

lI[F]=jj (V-ZoF)do-5 b,F(r,)=jf (V-2ofldo-~~ f3’Fda 
0 ,=I 0 u 

p’ = 2 b&r-r,) 
r=1 

(5.1) 

where S(r-r,) is the delta function of two variables. 
In the membrane analogy this passage to the limit leads to a simply connected membrane, loaded 

not only with a uniform pressure but also with point forces b,, applied at the points rr. 
If the number of concentrated dislocations, situated in a certain part of the region (T, is extremely 

large, it is best to change to a continuous dislocation distribution. To do this it is sufficient, in expression 
(5.1), to replace the generalized function p* by the usual distribution and call it the screw dislocation 
density 0. The physical meaning of the dislocation density is that the overall Burgers vector B of all the 
dislocations contained in a certain subregion (T’ C o is calculated from the formula 

The functional of the additional work lI and the equation for the stress function when there are 
continuously distributed dislocations, which follows from the variational principle 6II = 0, have the 
form 

l-l =lJ (v-2c0F-pF)da (5.2) 
0 

div(L+grad F) =-20-p(X,.X2) (5.3) 

In the membrane analogy, the continuous dislocation field, by Eq. (5.3), is modelled by the application 
of a variable normal load, the density of which is proportional to the dislocation density 0. 

Note that in the same region 6, where /3(x1, x2) f 0, the warping function w(xl, x2) does not exist, 
since the compatibility equation (1.8) is not satisfied. This prevents the existence of elastic 
displacements in the cross-section plane, so that the constant w preserves its meaning of the angle of 
torsion for continuously distributed screw dislocations also. 

Continuously distributed defects may also exist in a multiply connected cylindrical body containing 
Volterra dislocations. The functional of additional work for this general case, by virtue of (4.2) and (5.2), 
can be written in the form 

n[Fl= jI (V -2wF - PF)da - 2 (20$ + b,)C, (5.4) 
0 rrl 
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Because one can assume the density p to be a generalized function, expression (5.4) is also valid when 
there are lumped dislocations. 

As an example we will consider the problem of the torsion of a simply connected prismatic body when 
there is a constant dislocation density (B = p0 = const) and when there is no external torque. By relations 
(5.3) (2.1) and (2.5) this problem has a unique solution F = 0, o = -Bo/2. Hence, a uniform distribution 
of screw dislocations does not create stresses in a rod with a simply connected cross-section, although 
it also gives rise to torsion. This result is obvious in the light of the membrane analogy. 

6. GENERAL THEOREMS OF THE THEORY OF THE TORSION 
OF RODS CONTAINING DISLOCATIONS 

Suppose F(x,, x2) is the solution of boundary-value problem (5.3) (2.1) (2.4) for a specified angle of 
torsion w, a specified dislocation density p(xi, x2) and given Volterra dislocation characteristics 
b,(t = 1, . . . . N). Multiplying Eq. (5.3) by the function F, integrating over the region o and using the 
divergence theorem, we arrive at a formula which expresses a Clapeyron-type theorem (everywhere 
henceforth the integration is carried out over the region o) 

(6.1) 

Using (6.1) and the fact that the function vis positive we can prove a theorem of uniqueness of the 
solution of the problem of the torsion of an elastic body with dislocations. The theorem of uniqueness 
also remains true for a problem with an unknown angle of torsion w, but with a specified torque M. 

We will consider two solutions of the torsion problem F’ and F”, i.e. two equilibrium states of the 
bar, corresponding to two systems of external conditions p’, w’ and b’l and p”, u” and b”, , respectively. 
Using the fact that the tensor L possesses the property of symmetry, we can prove the following 
reciprocity theorem 

(6.2) 

As an example of the application of the reciprocity theorem, consider the problem of determining 
the angle of torsion of a bar of simply connected cross-section for a known dislocation distribution and 
zero torque. This equilibrium state, which we will set to be the first, is described by the following 
boundary-value problem 

div(L . grad F’) = -20 - F(X,, xp) 

F’I,,=O, jjF’do=O 

(6.3) 

We will take as the second state of the bar, that which exists when there is a constant unit dislocation 
density (p” = 1) and no torsion (w” = 0). This state is determined by solving the boundary-value problem 

div(L.grad F”) = -1, F” Iro=O (6.4) 

Using formula (6.2) we obtain an expression for the angle of torsion in terms of the solution of 
boundary-value problem (6.4) 

o’ = (-]I P’F”da)/(2jj F”do) (6.5) 

Hence, to determine the torsion of the bar, due to the specified dislocation distribution, there is no 
need to solve boundary-value problem (6.3), which contains an arbitrary function on the right-hand 
side of the generalized Poisson’s equation, and it is sufficient to solve the simpler standard torsion 
problem (6.4), for which the right-hand side of the generalized Poisson’s equation is constant. 

Using (6.5) it is easy to obtain the so-called Eshelby torsion [4,5], which arises when there is a lumped 
dislocation at the point (&, c2) with a length of the Burgers vector B 

o’ = -BF”(k,, c2)/(2jj F”do) (6.6) 
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In particular, for an orthotropic bar (I = 0), the cross-section of which is bounded by the ellipsexfla’ 
+ &b2 = 1, problem (6.4) has the following solution 

F” = 2(mg-ku*)( l -+k$) 
From relations (6.6) and (6.7) we obtain 

(6.7) 

When a = b this formula becomes the well-known expression [4] for the torsion of an isotropic circular 
cylinder with a lumped screw dislocation. 

7. THE DISLOCATION ENERGY IN A ROD 
OF RECTANGULAR CROSS-SECTION 

Consider the problem of the stressed state of a bar of rectangular cross-section 0 c x1 c a, 0 c 
x2 c b containing a lumped screw dislocation at an arbitrary point (&, c2). We will assume the material 
to be orthotropic (I = 0). From the physical point of view, it is of interest to investigate the energy of 
an elastic body due to a dislocation as a function of the location of the dislocation. Since the solution 
of Eq. (5.3) with a delta function on the right-hand side has a logarithmic singularity, the energy of the 
body with a lumped dislocation will be infinite. In order to eliminate this divergence of the energy, we 
will replace the lumped dislocation with a specified length of the Burgers vector B by a continuous 
dislocation distribution with a density which is constant inside the square ]xi - c1 1 < d/2, Ix2 - E2 1 < 
d/2 and equal to B/d2, and equal to zero outside this square. The side of the square d is extremely small 
compared with the dimensions of the cross-section. 

Thus, the function p on the right-hand side of Eq. (5.3) is taken in the form 

P(x, T x2)= 
{ 

Bld2. Ix,-5,i<d/2, (x2--t21cd/2 

0, Ix, -5,l>d/2, Ix2-521>d/2 
(7.1) 

The solution of boundary-value problem (2.1) (5.3), (7.1) will be found in the form of double 
trigonometric series 

Rx,, x2)= ‘y,, +2&,,)sin(~x,)sin(~x,) (7.2) 

‘Y,, =sin(~d)sin(~d)sin(~{r)sin(~&.), a=-$ 

L =~(cosrLs-l)(COSXf-1) 

The Eshelby torsion is found from the condition M = 0 and has the form 

1 (s2 + at2)s2r2 )-’ 

The summation in (7.3) is only taken over odd s and r. 
The dislocation energy is found from formula (6.1) 

(7.3) 

(7.4) 

The value of o is found from relation (7.3). 
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P/B2 x 16 

0 0.25 s2/b 0.50 

Fig. 2 

In Fig. 2 we show schematically the energy P as a function of the position of the dislocation, i.e. as 
a function of the coordinates ki, c2(0 G & < a, 0 G c2 G b). The curve in Fig. 2 is a section of the 
surface P(<,, L$) by the plane ci = a/2. In view of the symmetry of this section about the vertical axis 
we only show part of the graph, when 52 varies from 0 to b/2. 

Detailed numerical calculations showed that the sections of the surface P(&, &) by the planes 
<i = cc2 for any c have a minimum at the centre of the region. This means that the point c1 = c2 = 0 
is a minimum of the function P(&, c2). No other minima were found in the numerical analysis. This 
enables us to assert that the central position of the dislocation is stable. Note that the potential well 
described exists for any ratio of the compliances k and m and any ratio of the sides of the rectangle. 

Since, as was shown above, d/u -+ 1, in the calculations d was varied from d = 10da to d = 10Au. 
For these variations of the constant d the results did not qualitatively change. The value of the constant 
B plays no part since it is in fact the function P(&, c2)/B2 that was investigated. Stable results are obtained 
when the first lo4 terms in series (7.2)-(7.4) are taken into account. 
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